Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epileptic Disord ; 26(2): 199-208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334223

RESUMO

OBJECTIVE: Automated seizure detection of focal epileptic seizures is needed for objective seizure quantification to optimize the treatment of patients with epilepsy. Heart rate variability (HRV)-based seizure detection using patient-adaptive threshold with logistic regression machine learning (LRML) methods has presented promising performance in a study with a Danish patient cohort. The objective of this study was to assess the generalizability of the novel LRML seizure detection algorithm by validating it in a dataset recorded from long-term video-EEG monitoring (LTM) in a Brazilian patient cohort. METHODS: Ictal and inter-ictal ECG-data epochs recorded during LTM were analyzed retrospectively. Thirty-four patients had 107 seizures (79 focal, 28 generalized tonic-clonic [GTC] including focal-to-bilateral-tonic-clonic seizures) eligible for analysis, with a total of 185.5 h recording. Because HRV-based seizure detection is only suitable in patients with marked ictal autonomic change, patients with >50 beats/min change in heart rate during seizures were selected as responders. The patient-adaptive LRML seizure detection algorithm was applied to all elected ECG data, and results were computed separately for responders and non-responders. RESULTS: The patient-adaptive LRML seizure detection algorithm yielded a sensitivity of 84.8% (95% CI: 75.6-93.9) with a false alarm rate of .25/24 h in the responder group (22 patients, 59 seizures). Twenty-five of the 26 GTC seizures were detected (96.2%), and 25 of the 33 focal seizures without bilateral convulsions were detected (75.8%). SIGNIFICANCE: The study confirms in a new, independent external dataset the good performance of seizure detection from a previous study and suggests that the method is generalizable. This method seems useful for detecting both generalized and focal epileptic seizures. The algorithm can be embedded in a wearable seizure detection system to alert patients and caregivers of seizures and generate objective seizure counts helping to optimize the treatment of the patients.


Assuntos
Epilepsias Parciais , Convulsões , Humanos , Frequência Cardíaca/fisiologia , Modelos Logísticos , Estudos Retrospectivos , Taquicardia/diagnóstico , Taquicardia/complicações , Epilepsias Parciais/complicações , Aprendizado de Máquina , Eletroencefalografia/métodos
2.
Front Physiol ; 8: 765, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051738

RESUMO

Epilepsy is a neurological disorder that causes changes in the autonomic nervous system. Heart rate variability (HRV) reflects the regulation of cardiac activity and autonomic nervous system tone. The early detection of epileptic seizures could foster the use of new treatment approaches. This study presents a new methodology for the prediction of epileptic seizures using HRV signals. Eigendecomposition of HRV parameter covariance matrices was used to create an input for a support vector machine (SVM)-based classifier. We analyzed clinical data from 12 patients (9 female; 3 male; age 34.5 ± 7.5 years), involving 34 seizures and a total of 55.2 h of interictal electrocardiogram (ECG) recordings. Data from 123.6 h of ECG recordings from healthy subjects were used to test false positive rate per hour (FP/h) in a completely independent data set. Our methodological approach allowed the detection of impending seizures from 5 min to just before the onset of a clinical/electrical seizure with a sensitivity of 94.1%. The FP rate was 0.49 h-1 in the recordings from patients with epilepsy and 0.19 h-1 in the recordings from healthy subjects. Our results suggest that it is feasible to use the dynamics of HRV parameters for the early detection and, potentially, the prediction of epileptic seizures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...